Table of Contents

Associate Director’s Note ... 4
APPH 1050 HP: The Science of Physical Activity and Health .. 6
BIOS 1107 HP: Biological Principles I ... 7
BIOS 4803 HP: Special Topics: Conservation Biology .. 8
CHEM 1212K HP: Chemical Principles II ... 9
CHEM 3700 HP: Alternative Energy .. 10
COE 2001 HP: Statics .. 11
COS 3801 HP: Special Topics: Evolutionary Biology in Health and Disease 12
CS 1301 HP: Introduction to Computing (ONLINE) ... 13
CS 1371 HP: Computing for Engineers .. 14
EAS 2600 HP: Earth Processes .. 15
EAS 3110 HP: Energy, Environment, and Society ... 16
ENGL 1102 HP1: English Composition II .. 17
ENGL 1102 HP2: English Composition II .. 18
ENGL 1102 HP3: English Composition II .. 19
ENGL 1102 HP4: English Composition II .. 20
GT 3803 HP1: Special Topics: Engage Startup Innovation Practicum 21
HTS 2813 HP: Special Topics: The Sociological Imagination .. 22
HTS 3017 HP: Sociology of Gender .. 23
HTS 3031 HP: European Labor History .. 24
IAC 2002 HP: Science, Engineering, and Religion .. 25
INTA 3242 HP: Soccer and Global Politics ... 26
LMC 3506 HP: Enlightenment, Literature, and Culture .. 27
MATH 1553 HP: Introduction to Linear Algebra ... 28
MATH 2551 HP: Multivariable Calculus ... 29
MGT 4194 HP: Social Entrepreneurship ... 30
Music Ensembles (1 credit hour) .. 31
PHIL 3050 HP: Political Philosophy ... 32
Dear HP Students,

Greetings, I hope your fall semester is going well. Hard to believe, but it’s time to plan your HP curriculum for spring 2023. Phase I registration for fall runs from November 7 – December 16, 2022 and Phase II runs from January 5 - 13, 2023. The first day of the spring semester is Monday, January 9, 2023.

Please check out the HP Class options listed in this guide. You’ll find great HP Classes taught by dedicated faculty on a wide variety of engaging and timely topics. There is also an awesome feature in OSCAR that will allow you to search for Honors Program classes being offered. Select “Honors Program” from the Attribute Type menu and it will bring up the HP classes that are being offered (make sure to select at least one Subject first—selecting all Subjects will bring up every HP class).

Attribute Type:

- All
- Honors Program
- Humanities Requirement

Click here to find HP classes.

Here are some IMPORTANT NOTES about deadlines for particular spring HP STEM classes:

1. We are offering HP sections of MATH 1553, Linear Algebra (2 credits) and MATH 2551, Multivariable Calculus (4 credits). You must register for the HP section of the class and the HP section of the studio. **SEATS IN THE HP SECTIONS WILL ONLY BE HELD FOR ONE DAY PAST THE FINAL TIME TICKET FOR FIRST-YEAR STUDENTS. REGISTER AS SOON AS YOUR TIME TICKET OPENS IF YOU WANT A SEAT IN EITHER OF THESE CLASSES.**

2. We are offering HP sections of BIOS 1107, CHEM 1212K, and PHYS 2211 with linked Honors Program labs. You must register for both the lecture and lab.
 a) **SEATS IN THE HP SECTIONS OF CHEM 1212K WILL ONLY BE HELD THROUGH NOVEMBER 16.** Make sure to secure your seat if you’d like to take this class for HP credit.
 b) **SEATS IN THE HP SECTIONS OF BIOS 1107 WILL ONLY BE HELD THROUGH THE END OF PHASE I REGISTRATION (DECEMBER 16).** Make sure to secure your seat if you’d like to take this class for HP credit.

3. **SEATS IN MGT 4194- HP WILL BE AVAILABLE UNTIL MONDAY, JANUARY 9, AFTER WHICH TIME THEY WILL BE MADE AVAILABLE TO NON-HP STUDENTS.** Make sure to secure your seat if you’d like to take this class for HP credit.

In addition, please consider your options to earn HP-authorized credit for these non-HP courses:

- Music Ensemble courses
• **Research courses** (VIP, PURA, HP-authorized independent research)

• **Study abroad courses** (HP-authorized)

As always, please work with your GT Academic Advisor to choose options that bring you the benefits of HP-style learning and that work for your GT major degree.

If you ever have questions or concerns, don’t hesitate to contact me at amy.dunger@gatech.edu. Have a fantastic conclusion to your fall semester and good luck with spring registration.

Regards,

Dr. Amy D’Unger
APPH 1050 HP: The Science of Physical Activity and Health

Dr. Christie Stewart 2 credit hours
50 HP seats

Students will learn the importance of health, physical activity, nutrition, stress management/mindfulness and chronic disease prevention through discussion of health/well-being concepts and current health research and trends. Students will form teams for a semester-long project relating to leadership and campus well-being. The activity portion of the course will focus on a specific physical activity mode (e.g. Fitness 101, Weight Training, Yoga) to improve overall fitness.

Christie Stewart is an Academic Professional in the School of Biological Sciences. She received a Bachelor of Science in Movement Science from the University of Pittsburgh and a Master of Education in Clinical Exercise Physiology from the University of Georgia. Most recently, she received her Doctorate in Educational Leadership from Mercer University. Prior to her current position, Christie worked as Associate Director for Healthy Lifestyle Programs at the Campus Recreation Center, where she worked closely with the School of Applied Physiology to help create the activity sections for APPH 1050. Her research interests include the culture of health/well-being on college campuses and health/well-being and academic success. Christie and her colleague, Lesley Baradel, developed the Flourishing: Strategies for Well-Being and Resilience in response to the campus community's need for additional education and support for well-being and resilience.

| Lecture: | M/W
| 9:30 AM
| Curran Street Deck 210 (LLC West Commons; 8th St., across lobby from Cluck and Mooh) |
| CRN: | 28302 |
BIOS 1107 HP: Biological Principles I

Dr. Colin Harrison & Dr. Alex Draper 4 credit hours

Please note: You must register for the lecture and lab section. 12 HP seats

This active-learning course will introduce you to basic principles of modern biology, including evolution, ecological relationships, biomacromolecules, bioenergetics, cell structure, and genetics. This course will help you develop critical scientific skills including hypothesis testing, experimental design, data analysis and interpretation, and scientific communication. Class time will include a variety of team-based activities designed to discuss, clarify, and apply new ideas by answering questions, drawing diagrams, analyzing primary literature, and explaining medical or ecological phenomena in the context of biological principles. We will spend class time on building your comprehension of the material you find the most difficult, based on pre-class assessments. You will play a key role in determining the focus of each day’s effort. By the end of this term, you will be able to:

1. Explain fundamental principles of modern biology, including evolution, ecological relationships, biomacromolecules, bioenergetics, cell structure, and genetics.
2. Use scientific skills to test hypotheses, design experiments, analyze and interpret data, and communicate scientifically

Dr. Colin Harrison is a Senior Academic Professional in the School of Biological Sciences. He earned his Ph.D. in Genetics and Molecular Biology at Emory University and B.S. in Genetics at the University of Wisconsin. He studies biology education research with a focus on laboratory learning, instructor language, and science identity. His research interests include STEM education, developmental biology, and genetics.

Dr. Alex Draper is an Adjunct Lecturer in the School of Biological Sciences. He received a Bachelor of Science in Biology from Texas A&M University - Corpus Christi and most recently a Doctor of Philosophy in Biology from Georgia Institute of Technology. His research interests include climate change biology and animal behavior, and he is also passionate about teaching and learning inside and outside of the classroom.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W/F</th>
<th>9:30 AM</th>
<th>College of Design East 126</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>TH</td>
<td>3:30 PM</td>
<td>Clough 481</td>
</tr>
<tr>
<td>CRN (lecture- HP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRN (lab- HPL)</td>
<td>33938</td>
<td>33934</td>
<td></td>
</tr>
</tbody>
</table>

Lecture M/W/F
9:30 AM
College of Design East 126

Lab

TH
3:30 PM
Clough 481

CRN (lecture- HP)
33938
CRN (lab- HPL)
33934
BIOS 4803 HP: Special Topics: Conservation Biology

Dr. Linda Green
Prerequisites: BIOS 2300 or BIOS 2310 or BIOL 2335 or BIOL 2337. If you have not satisfied the pre-requisites for this course, please contact Dr. Green at linda.green@gatech.edu to discuss obtaining a permit to override the pre-requisites.

3 credit hours
8 HP seats

Earth is currently in its sixth major extinction event. The need to mitigate the effects of biodiversity loss has given rise to the science and practice of Conservation Biology. This relatively new discipline encompasses core biological perspectives from the fields of ecology and evolution as well as applied approaches such as wildlife management, forestry, and fisheries biology. Additionally, Conservation Biology intersects with political science, sociology, law, economics, and engineering in its pursuit of conserving biological diversity. In this class we will focus on biological principles that form the basis of successful conservation efforts. Recent and current events ranging from environmental catastrophes, national and international policymaking, and emerging crises in wildlife populations will be actively discussed, with attempts made to appreciate the views and values of disparate stakeholders.

By the end of this course, students will be able to:
- understand and analyze the biological criteria and data that drive conservation decision-making, including red-listing species and the implementation of new policies to protect biodiversity,
- use scientific knowledge to interpret examples and case studies involving contemporary issues affecting biodiversity, and
- articulate and communicate a breadth of knowledge of conservation challenges, societal and ethical issues, government policies, and programs in a variety of formats.

Dr. Linda Green is Director of Tutoring and Academic Support and a member of the faculty in Biological Sciences at Georgia Tech. She has 15 years experience in stream ecology and conservation, and particularly loves a hike in the woods to uncover salamanders. Her recent interests involve urban impacts on wildlife and the human-wildlife interaction.

Lecture:
M/W
2:00 PM
College of Computing 102

CRN: 34141
Welcome to Chemical Principles II! This course will help you develop facility with fundamental models of chemical reactivity, analysis, and structure. Broadly, the course covers chemical kinetics, chemical equilibrium and applications thereof, electrochemistry, and the chemistry of transition metal complexes. Through video lectures, active problem solving in class, and hands-on exploration in the laboratory, we hope you’ll develop the ability to see chemical principles in your future courses and careers.

Dr. Michael Evans was born in Louisville, Kentucky, and obtained a BS in Chemistry from the University of Kentucky in 2008 and a PhD in Chemistry from the University of Illinois in 2013. He has been an Academic Professional at Georgia Tech in the School of Chemistry and Biochemistry since 2013 and teaches introductory and organic chemistry. He is also a faculty mentor for the STEM Communication VIP, an occasional instructor of GT 1000, and the purveyor of the @GT_CHEM Twitter account. In his spare time, he enjoys running, playing chess and the bass guitar, building Legos with his sons Wallace and Winston, and trying to keep up with his extraordinarily extroverted wife Jess.

Dr. Deborah Santos is a recent addition to the School of Chemistry and Biochemistry and will head up the first-year chemistry labs. She grew up in the Metro Atlanta area and has attended and taught in several schools and universities prior to coming to Tech. She received her PhD in Chemistry Education from Georgia State University this year and an MS in Organic Chemistry from the University of Georgia in 2015. She was a high school chemistry teacher prior to earning her PhD and has current research interests in how students learn to “do” science. Her PhD work focused on the psychological aspects of learning chemistry (mindset and motivation) and her MS work involved developing chemistries for attaching carbohydrates and proteins to polymer surfaces for biological applications.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W/F 8:25 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clough 152</td>
</tr>
<tr>
<td>Lab</td>
<td>TH 12:30 PM</td>
</tr>
<tr>
<td></td>
<td>Clough 575</td>
</tr>
<tr>
<td>CRN (lecture- HP)</td>
<td>34064</td>
</tr>
<tr>
<td>CRN (lab- HP2)</td>
<td>33985</td>
</tr>
</tbody>
</table>
CHEM 3700 HP: Alternative Energy

Dr. Micah Shaible and Dr. Victor Breedveld

Prerequisites: CHEM 1310 or CHEM 1211K + 1212K and PHYS 2211 and PHYS 2212

This course will give a general overview of the most popular and most promising alternative energy solutions which are currently being used or developed to help relieve the world dependence on fossil fuels. The course will also discuss and explore how and where the various alternative energy options can be most effectively employed within the current energy landscape. The basic scientific principles governing the current and future approaches in solar photo-voltaics, fuel cells, biomass conversion, nuclear energy, smart-grids, wind power, etc. will be presented. Though the course will focus on the basic principles and fundamental science underpinning the current advancements in energy technologies, there will also be an emphasis on understanding the economic, political, and general sustainability issues associated with the most popular alternative energy options. Due to the interdisciplinary nature of the topic, the course will involve multiple guest instructors from across the campus, and in-class discussions among the participating students from different majors will be a significant component of the learning experience.

Dr. Micah Schaible is a Research Scientist in the School of Chemistry and Biochemistry and a member of the Center for Space Technology and Research (CSTAR). He obtained his undergraduate degree in engineering from Montana Tech University, and his PhD in Applied Physics from the University of Virginia. Since joining Georgia Tech in 2017 he has taught several courses using student-centered teaching methods, and he is passionate about creating meaningful learning experience for students. His research focuses on radiation interactions with airless bodies in space (e.g., asteroids and the Moon) and organic molecule thin films.

Dr. Victor Breedveld is Professor and Associate Chair for Undergraduate Studies in the School of Chemical & Biomolecular Engineering. He came to the U.S. after obtaining his Ph.D. from the University of Twente in the Netherlands and spend two years at the University of California – Santa Barbara before joining the Georgia Tech faculty in 2003. He has taught a variety of courses, but particularly enjoys learning environments that bring students from different majors together, such as this course and the Energy Systems Capstone class. His research focuses on complex fluids and on the interactions (wetting, absorption, repellency) between fluids and solid substrates.

Lecture: T/TH 9:30 AM
Molecular Sciences & Engineering G021
CRN: 33989
COE 2001 HP: Statics

Dr. Jason Wang 2 credit hours
Prerequisites: MATH 1552 and PHYS 2211 25 HP seats

This course is an introduction to engineering, specifically engineering mechanics. It utilizes concepts from physics and applies them in an engineering framework, setting the foundation for future engineering analysis and design courses. The instructor will model various problem-solving approaches to help students learn to work independently and collaboratively as they analyze diverse problems common in engineering mechanics. Through in-class discussions and problem-solving, students will learn to see the world around them from an engineering mechanics perspective.

Dr. Jason Wang is the Data Management Specialist in Georgia Tech’s Institutional Research and Planning (IRP) office. He earned his Ph.D. in Bioengineering and his B.S. and M.S. in Mechanical Engineering from Georgia Tech. Jason's passion for teaching and learning has taken him from being an undergraduate student to a graduate TA to an instructor to working in the Center for Teaching and Learning. His position in IRP provides new opportunities to work on undergraduate education at a higher level while continuing to engage with Georgia Tech students in the classroom.

<table>
<thead>
<tr>
<th>Lecture:</th>
<th>T/TH 3:30 PM Curran Street Deck 210 (LLC West Commons; 8th St., across lobby from Cluck and Mooh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRN:</td>
<td>33776</td>
</tr>
</tbody>
</table>
COS 3801 HP: Special Topics: Evolutionary Biology in Health and Disease

Dr. Peter Conlin 1 credit hour

Prerequisites: BIOS 1107 or 1207 10 HP seats

Evolutionary Biology in Health and Disease will introduce fundamental evolutionary concepts (mutation, natural selection, genetic drift, and adaptation) using examples from evolutionary medicine. Emphasis will be placed on cases of rapid evolution that directly impact medical practice such as the evolution of virulence, the evolution of resistance to antibiotics, and the disease progression of cancers. Other topics will include the emergence of infectious diseases and practical applications of evolutionary theory in designing vaccines, drugs, and other treatments against infectious disease. You will learn to read scientific papers and participate in group activities centered around medical case studies.

Dr. Peter Conlin is a postdoctoral researcher studying microbial experimental evolution and ecology in the School of Biological Sciences at Georgia Tech. He completed his PhD in Biology at the University of Washington in 2018 where he studied the evolution of antibiotic resistance in bacteria and the effects of environmental heterogeneity on microbial adaptation. His current research uses a combination of laboratory natural selection experiments, digital evolution, and computer simulation to understand the evolution of multicellularity.

Peter’s teaching experience includes serving as a TA for the following courses: Experiments in Molecular Biology, Experimental Evolutionary Ecology, General Mycology, and Biological Clocks and Rhythms (all at the University of Washington). He has also been the primary research mentor for 12 undergraduate students.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>F 12:30 PM Clough 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRN</td>
<td>34010</td>
</tr>
</tbody>
</table>
CS 1301 HP: Introduction to Computing (ONLINE)

Dr. David Joyner
3 credit hours

Please note: You must register for the lecture and recitation separately. Class is online and asynchronous. Recitation is online and synchronous.

The purpose of this online course is to give students an introduction to computer programming. Students will gain experience and practice with logical thinking and debugging. The focus in the course is on developing skills and experience in software development and use of software tools. No prior CS coursework is required. The HP section will be limited to 50 students and will include an optional recitation session led by a CS TA. On 4 occasions, Dr. Joyner will attend the recitation session.

Dr. David Joyner has a passion for leveraging new technologies to improve student learning. He focuses on online learning not through MOOCs, but through large online classrooms. He is interested in the unique opportunities these classes have for personalizing student learning and granting students greater ownership and autonomy over their education. He's seen incredible things happen with online learning at the graduate level, and is excited to extend those opportunities to undergraduate students. Dr. Joyner completed his Ph.D. in Human-Centered Computing at Georgia Tech. He now works for the College of Computing as its Associate Director for Student Experience. Dr. Joyner is also teaches in the OMSCS program, teaching CS6460: Educational Technology, CS6750: Human-Computer Interaction, and CSE6242: Data & Visual Analytics. He also runs an online research lab: lucylabs.gatech.edu.

Recitation	TH
	5:00 - 6:15 PM online (synchronous)
CRN (online lecture – HP)	26220
CRN (online recitation – HPR)	28093
CS 1371 HP: Computing for Engineers

Kantwon Rogers

Please note: You must register for the lecture and recitation separately.

3 credit hours
35 HP seats

Foundations of computing with an introduction to design and analysis of algorithms and an introduction to design and construction of programs for engineering problem-solving.

Kantwon Rogers is a Computer Science PhD student advised by Dr. Ayanna Howard. He also earned a BS in Computer Engineering, an MS in Electrical and Computer Engineering, and a MS in Human-Computer Interaction from Georgia Tech. Kantwon is a winner of the 2018 Institute-Wide Graduate Student Instructor Award and of the 2015 Institute-Wide Teaching Assistant Award. His research revolves around understanding how humans come to trust and be deceived by robots and artificial intelligent systems.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W/F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9:30 AM</td>
</tr>
<tr>
<td></td>
<td>Clough 144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recitation</th>
<th>TH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5:00 PM</td>
</tr>
<tr>
<td></td>
<td>College of Design East 207</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRN (lecture- CS 1371 HP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21344</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRN (recitation- CS 1371R HP1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28139</td>
</tr>
</tbody>
</table>
EAS 2600 HP: Earth Processes

Dr. Andrew Newman (lecture) 4 credit hours
Dr. Meg Grantham (lab) 9 HP seats

Please note: You must register for the lecture and lab separately.

Through lecture, discussion, labs, and field experiences around Atlanta this course is aimed at providing you with an understanding of how the Earth works and how it affects you. As an inhabitant of Earth, you may be interested in learning about processes that shape the landscape, drive natural hazards, influence climate change, and produce natural resources. Knowledge of how the Earth works can also help you in your daily lives. You may need to evaluate potential geologic and climate hazards when expanding your business, make informed decisions about the use and conservation of natural resources and how it may affect global policy. Finally, you may better appreciate the features you will encounter when you hike through mountains, hit the beach, or visiting a national park.

Dr. Andrew Newman is a Solid-Earth Geophysicist in the School of Earth and Atmospheric Sciences, and was trained at Northwestern University. Before arriving at Georgia Tech in 2005, he worked at Los Alamos National Laboratory on developing non-linear numerical models to explain volcanic unrest, and UC Santa Cruz on a study to image earthquake behavior in Central America. Throughout his research, his focuses remains on problems of geologic hazards, and primarily on those that surround active deformation and brittle failure of the earth’s lithosphere in seismic and volcanic regions. The specialty is broadly defined as earthquake and volcano geophysics. While he primarily uses GPS and seismology, Newman terms himself a ‘Garbage Pail Geophysicist’ as he'll use whatever tool is available to get at answering the geophysical/geologic question at hand.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>T/TH 9:30 AM Ford ES&T L1116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>M 3:30 PM Kendeda 298</td>
</tr>
<tr>
<td>CRN (lecture- HP)</td>
<td>31612</td>
</tr>
<tr>
<td>CRN (lab- HPL)</td>
<td>31575</td>
</tr>
</tbody>
</table>
This interdisciplinary seminar-style course relies on guest speakers from across the Tech campus and beyond, encouraging lively discussion of both current events and past developments relevant to our nation's energy and climate future. The main student activity will be a semester-long "Carbon Reduction Challenge", in which student teams compete to reduce carbon footprints by the end of the semester.

Dr. Jairo Garcia is an expert in urban sustainability and climate change. Dr. Garcia is the CEO of Urban Climate Nexus, the North America Curator for United Nations Habitat, a Sustainable Development Goals Educator Fellow, and long-term collaborator and lecturer at Johns Hopkins University and The Georgia Institute of Technology. Dr. Garcia is the former Director of Climate Policy with the City of Atlanta and the lead author of Atlanta’s Climate Action Plan. He received the 2017 Individual Climate Leadership Award by the EPA, and the 2021 Green Ring Award by the Climate Reality Project for this demonstrated an exceptional commitment to climate communications and climate action activism. His areas of research are in urban climate vulnerabilities with a focus on urban heat and food security.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W 3:30 PM Molecular Sciences and Engineering G011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRN</td>
<td>33452</td>
</tr>
</tbody>
</table>
ENGL 1102 HP1: English Composition II

Dr. Suchismita Dutta 3 credit hour
Prerequisites: ENGL 1101 18 HP seats

Standing at the cusp of post-covid recovery, a climate crisis, and soaring inflation, rethinking sustainable development has become the need of the hour. While many non-profit organizations in Atlanta are working towards promoting mixed income housing communities, accessible education, and community health and wellness programs, issues like gentrification, environmental factors, and economic crises hinder this equitable decision making.

In this course, we will take Georgia Tech’s WOVEN (Written, Oral, Visual, Electronic, and Nonverbal) approach to explore some difficult yet timely socio-economic-ecological issues using Atlanta, Georgia Tech, and few local non-profit organizations as our prototypes. We will investigate some broad questions like: How can our racialized history and present guide future planning towards equitable decision-making? What does sustainability mean in this age of gentrification, technological advancement, and fast fashion? How can you apply the concept of sustainability to education, affordable and equitable housing, and food security? As an honors class, you are expected to create your own list of secondary sources that we will explore collectively and eventually document in our course website.

This course is placed at the intersections of writing and communication studies, theories of sustainability, and environmental justice. Peer review, collaboration with classmates, active participation in classroom discussions, and revision are some of the methods that you will adopt to develop your own writing. Multimodal texts include Atlanta Noir by Tayari Jones, The Georgia Tech Archives: The Techwood Homes Collection, “A Tale of Placemaking” by Aimee Okotie-Oyekan, among others.

Dr. Suchismita Dutta is a Marion L. Brittain Postdoctoral Fellow and the Assistant Director of Wring and Communication at Georgia Tech. Her research and teaching incorporate critical race and ethnic studies, antiracist pedagogies and writing across the curriculum. She completed her PhD in English with a Graduate Certificate in Digital Humanities at the University of Miami in summer 2021. Currently, she is teaching an undergraduate writing course titled, "Archiving Atlanta: Race, Technology, Nostalgia, and a Zombie Apocalypse" that is placed at the intersections of writing studies and popular culture studies. Additionally, she is working as a WCP Faculty Fellow in Georgia Tech’s Public Interest Technology (PIT) for First-Year Engineers Project.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W 9:30 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skiles 314</td>
</tr>
<tr>
<td>CRN</td>
<td>23843</td>
</tr>
</tbody>
</table>
ENGL 1102 HP2: English Composition II

Dr. Shane Snyder 3 credit hours
Prerequisites: ENGL 1101 18 HP seats

Video games can teach difficult lessons, protest social inequalities, tell poignant stories, exploit our baser instincts, and model complex moral systems. While video games occasionally accomplish these goals through inventive narrative design, they often include mechanics like shooting, point systems, and leveling up. Games that privilege these mechanics lend themselves well to increasingly popular esports competitions, in which teams of expert gamers compete against one another for major cash prizes. However, as Christopher A. Paul writes in his book The Toxic Meritocracy of Video Games, these can lead to problems in gaming and American culture because they ultimately depend, "on meritocratic norms, which have the terrible impact of magnifying and excusing any structural inequalities among those playing video games." Proceeding from Paul’s thesis that contemporary video games too often privilege individualism over these structural inequalities, this class adopts a historical view on video games and gamer communities from the middle of the Cold War to the present day. In the process, we will interrogate problems related to contemporary video game communities, esports tournaments, the game consumer identity (or "gamer," as it's popularly known), game designers and designs, subversive video games, and foundational academic scholarship that both reflect and confront American cultural anxieties about the video games industry and its products.

Assignments for this class include a paired archival research project in partnership with retroTECH, an individual online ethnographic study, a collaborative building project in Minecraft, and a final portfolio of your semester work. The overall goals of this course are the following: to use video games and video game scholarship as tools to research the problems of meritocracy and individualism in video games and American culture and to build multimodal projects that integrate your original research about video games, gamer communities, and the video games industry.

Dr. Shane Snyder is a Marion L. Brittain Postdoctoral Fellow in the School of Literature, Media, and Communication. He received his Ph.D. in American Culture Studies from Bowling Green State University, where he also completed his M.A. in Literary and Textual Studies. His primary areas of research are in feminist and queer video game studies. He is currently working on a collaborative project that scrapes and codes Metacritic user review content to investigate audience reactions to a queer game narrative about trauma and loss. His articles can be found in the Journal of Popular Culture and the Journal of Gaming and Virtual Worlds.

| Lecture | T/TH
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3:30 PM</td>
</tr>
<tr>
<td></td>
<td>Hall 103</td>
</tr>
<tr>
<td>CRN</td>
<td>30121</td>
</tr>
</tbody>
</table>
ENGL 1102 HP3: English Composition II

Dr. Eric Lewis
3 credit hours

Prerequisites: ENGL 1101
18 HP seats

This course provides you opportunities to become a more effective communicator by examining the many ways in which cinema (and especially horror cinema) contributes to and/or comments upon marginalization and otherness. You will analyze and yourself perform film criticism and storytelling. By doing so, you will learn essential research and composition skills that you will be able to apply to diverse scenarios throughout your academic and professional career. You will employ WOVEN modes to produce diverse projects about film and its messages. You will be given latitude to produce work in a range of media and modes, from audio podcasts to a film pitch presentation including concept art, movie posters, and scene storyboards.

Fear is integral to ideologies of marginalization—xenophobia, homophobia, transphobia, etc. Often, fear operates in these contexts to identify and vilify the Other—someone who is different and poses some sort of existential threat to the Self. In this course, we use horror cinema to explore various forms of marginalization and the popular culture messaging that supports or challenges them. How does horror cinema represent various Others? Or radically adopt traditionally marginalized perspectives? What are the potential ideological consequences of such representations? What are the communicative functions of horror, and what generalizable lessons about effective communication might be learned from its example?

Dr. Eric A. Lewis is a Marion L. Brittain Postdoctoral Fellow in the Writing and Communication Program at Georgia Tech. Eric completed his PhD in English at the University of Notre Dame. Danielle’s research interests include twentieth- and twenty-first century Global Anglophone literature, especially Irish and South African fiction, character-reader relationships, and horror cinema.

Lecture	T/TH
	8:00 AM
	Hall 106
CRN	33288

ENGL 1102 HP4: English Composition II

Dr. Lainie Pomerleau 3 credit hours
Prerequisites: ENGL 1101 18 HP seats

Neomedievalism, despite its name, is less a study of the Middle Ages than a collection of texts and spaces where people freely move in and out of any number of fantastical worlds tethered to - and free from - the historical past. Neomedieval worlds make themselves accessible to nonexperts by reimagining medieval culture away from historical constraints and include everything from Marvel’s version of Asgard, Thor, and Loki to fantasy novels from writers like J.R.R Tolkien and Neil Gaiman to video games like The Witcher and Elden Ring to Dungeons and Dragons and other RPG games to renaissance fairs and the restaurant Medieval Times.

Our 1102 class will analyze, interrogate, and actively document neomedivalism’s cultural impact by critically defining, exploring, and composing in multiple genres and modes across class artifacts, the Common First Week Video, and a final portfolio. Students in ENGL 1102 will create purposeful, audience-directed texts in multiple genres that present well-supported arguments using appropriate conventions of written, oral, visual, and/or nonverbal communication.

Dr. Lainie Pomerleau is a Marion L Brittain Postdoctoral Fellow in the Writing Communication Program at Georgia Tech. Lainie completed her MA at the University of Tennessee and her PhD at the University of Georgia where she taught writing and literature courses and worked as a science communications coordinator. Lainie’s research interests include medieval and Shakespearean literature, popular science writing, and multimodal communication studies.

| Lecture | T/TH 12:30 PM
 | Skiles 314 |
| --- | --- |
| CRN | 26314 |
GT 3803 HP1: Special Topics: Engage Startup Innovation Practicum

Dr. Nammy Vedire 3 credit hours

Please Note: By permit only for accepted applicants. To receive a permit, please apply online. Applications due by 11:59 PM on 12/4/22. Taught in Tech Square.

This course offers students hands-on experience as interns working in a startup program environment, performing roles that support investment analysis, insights development, creation of design and communications, and program operations at Engage, a program in GT’s Enterprise Innovation Institute. These internships require a commitment of 168 hours for the semester: 12 hours per week for 14 weeks. Students will need to work out a schedule that fits around their other classes and account for a weekly internship meeting. Students will have the opportunity to attend special events, including speakers, workshops, and receptions, which will count toward the 12 hour/week commitment. This practicum will offer students exposure to startups, corporate innovation, team dynamics, leadership skills, finance, market analysis, business models, capital raises, and storytelling. Preference will be given to applicants with relevant experience.

Please visit here for:
- Descriptions of the four internships (Investment, Insights, Design & Communication, Operations)
- Application instructions (at the “Apply Now” button):
 - Be sure to answer YES to the question on the application form: “Are you in the GT Honors Program?” If you are accepted for an internship, Dr. Vedire will then issue you a permit for GT 3803 HP1.
- Direct accounts from previous student interns about their internship experience at Engage and more details about the Engage internship program.

Dr. Nammy Vedire is the Director of Platform and Operations at Engage. She leads the development of the programming and content delivered to the Engage startups. Nammy has worked with over 70 student, faculty, and alumni-led early-stage startups both at Yale and Georgia Tech. Nammy holds a Ph.D. in Electrical Engineering from Yale University. She received her Bachelor’s in Electrical Engineering from the Indian Institute of Technology Hyderabad, India. An artist and graphic designer, Nammy has over eight years of training in fine arts and has studied at the Yale School of Art.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>F 2:00 – 2:50 PM Engage Studio Space (Tech Square– Centergy One, Ste. 2100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRN</td>
<td>29216</td>
</tr>
</tbody>
</table>
C. Wright Mills once argued that the greatest skill that sociology offered to its students was “the sociological imagination,” by which he meant the ability to look at an individual life and see how it has been shaped by larger social institutions and forces and, vice versa, to see macro-social trends and understand how they might impact an individual life. Mills wrote that the sociological imagination exists at the intersection of history and biography. This course will take this charge head-on by reading a biography and analyzing an individual life sociologically. Specifically, students will be reading The Autobiography of Malcolm X as told to Alex Haley. Each week, students will be introduced to sociological concepts and theories about a particular social institution (e.g. Race, Family, Education, Gender/Sexuality, Criminal Justice, Religion, Social Movements, The Media, Sports, etc.). They will also read a corresponding chapter from The Autobiography of Malcolm X. Through class discussion, personal reflection essays, group projects, and a culminating term paper, students will analyze the life of Malcolm X – and their own lives – using the sociological imagination.

Dr. Kate Pride Brown is Associate Professor in the School of History and Sociology at Georgia Tech. She studies power – its sources and its outcomes – particularly as it relates to nature and environmental sustainability. Her book, Saving the Sacred Sea (Oxford University Press, 2018), is an ethnography of environmental activism at Lake Baikal in Siberia. Her research has also appeared in Communist and Post-Communist Studies, Energy Research and Social Science, Environmental Politics, Environmental Sociology, Ethnography, Memory Studies, Nature and Culture, Research in Political Sociology, Social Movement Studies, Sustainability: Science, Practice and Policy, Water Policy and WIREs Water. Among other honors, she has received a Fulbright Fellowship, a Critical Language Scholarship from the U.S. Department of State, and funding from the Horowitz Foundation for Social Policy and the National Council for Eurasian and East European Research.
HTS 3017 HP: Sociology of Gender

Dr. Amy D'Unger

This course is an introduction to the sociological study of gender. Our focus is on gender as a social construction that is negotiated through interaction and affects our social relationships and personal experiences. We examine the changes and maintenance of gender roles and identity and the ways in which gender and power are interconnected.

We will begin the class with an examination of biological and socialization theories and investigate cultural and structural explanations for gender differences. We then analyze how gender impacts and is impacted by such social institutions as the family, work, education, medicine, politics, and law. Throughout the course we will explore the intersections of gender with class, race, and sexual orientation.

The assignments are designed to help you learn to think critically about the social construction of gender, to give you an introduction to sociological research, and to develop your skills in communicating clearly and convincingly during class discussions and in written work.

Dr. Amy D’Unger (PhD, Duke University, 1999) is the Associate Director of the Georgia Tech Honors Program. She is a sociologist with interests in the areas of race, class, and gender; inequality; social policy; social control and eugenics; and crime. Her previous research has looked at the impact of neighborhood social disorganization, peer networks, family structures, and school ties on delinquency and crime over the life course. She is currently researching the role of eugenic (involuntary) sterilization in the South as a tool of informal social control, particularly during the Civil Rights Movement.

Dr. D’Unger has published in such journals as the American Journal of Sociology, the Journal of Quantitative Criminology, and the Encyclopedia of Crime and Justice on topics such as criminal careers, gender and offending, and feminist criminological theory.

Dr. D’Unger has been recognized for excellence in academic advising by both Georgia Tech and the National Academic Advising Association, and has won teaching awards from both the Ivan Allen College of Liberal Arts and Georgia Tech.

| Lecture | T/TH
| 9:30 AM | Curran Street Deck 210 (LLC West Commons; 8th St., across lobby from Cluck and Mooh) |
| CRN | 33527 |
HTS 3031 HP: European Labor History

Dr. Douglas Flamming

In this course we will explore the history of the British working classes from roughly 1790 to 1990. These two-hundred years witnessed explosive changes in the nature of work, sparked by the Industrial Revolution (which began in England), marked by the triumph of “classical” (pro-capitalist) liberalism, and transformed by two world wars and the explosive political climate after 1945. We will trace the origins, evolution, triumphs, and defeats of the British working classes, including the creation of British labor unions, and the rise and fall of the Labor Party. By focusing on the British workers, we will gain a broader perspective on the nature of work and industrial capitalism in Europe and the western world. Class formation and gender transformations will be important topics.

I will lecture as necessary, but most of our class time will be spent in discussion. I will assign several books, including the always popular 1845 work by Fredrick Engels (Karl Marx’s right hand), The Condition of the English Working Class, with its eye-popping descriptions of the “dark, satanic mills” of Manchester. We will discuss readings, lectures, and documentary films in class. The story of British Labor is fascinating and important, and I invite you to share it with me this spring.

Dr. Douglas Flamming is a Guggenheim Fellow and winner of Georgia Tech's prestigious Geoffrey Eichholz Teaching Award. He specializes in the social and political history of the United States since the Civil War and teaches a variety of courses, including the History of the New South, the Industrial Revolution, the Vietnam War, and the U.S. History survey. Flamming is the author of three books: Creating the Modern South: Millhands and Managers in Dalton, Georgia (University of North Carolina Press, 1992); Bound for Freedom: Black Los Angeles in Jim Crow America (University of California Press, 2005); and African Americans in the West (ABC-CLIO, 2009). He is completing a study of the Civil Rights Act of 1964 and is launching a research project on the Gulf Coast shrimping industry.

| Lecture | M/W 2:00 PM
| | Old Civil Engineering G10 |
| CRN | 33669 |
Dividing lines exist within the rigorous, truth-seeking, intellectually demanding academic setting that defines Georgia Tech. I invite you to consider two examples. 1) Walls often separate science and engineering, on the one side, from religion and spirituality, on the other side. It is commonly assumed, for instance, that serious scientists and engineers cannot, by definition, be people of faith; and vice versa. Such matters are rarely, if ever, topics of conversation in classes. 2) Walls often separate the various religious traditions and worldviews that are represented in Georgia Tech’s exceptionally diverse student body. For example, Christians often know very little about the beliefs and practices of Muslims, Jews about Buddhists, Taoists about Sikhs, Hindus about secular humanists. Meaningful dialogue between different religious traditions and worldviews on campus is uncommon, or perhaps only comes in response to some tragic event. Again, such matters are rarely, if ever, topics of conversation in classes. With Georgia Tech’s strategic goal of graduating outstanding global citizens, it is my view that the educational experience Georgia Tech provides could be further enhanced by ensuring religious literacy and engaging meaningful dialogue across the boundaries of science, engineering and religion, particularly within the context of interfaith diversity. After all, we live in an ever-flattening global community. This course is intended to help break down these barriers to meaningful dialogue in a creative way. The course will gather together a diverse set of students who are serious about their spiritual lives, and yet who are also studying hard to be Georgia Tech’s next cadre of world-class graduates. Together, we will explore a variety of topics related to the intersection of science, engineering, and religion. No prior background is assumed. We will break open these topics by engaging in open and constructive dialogue.

Dr. John D. Cressler is Regents Professor, Schlumberger Chair Professor in the School of Electrical and Computer Engineering, and the Ken Byers Teaching Fellow in Science and Religion. The basic thrust of Cressler’s research is to develop novel micro/nanoelectronic devices, circuits and systems for next-generation applications within the global electronics infrastructure. In addition to his academic duties, Cressler writes historical fiction, love stories set in medieval Muslim Spain that celebrate the era of convivencia (coexistence), a unique period when Muslims, Jews, and Christians lived together in harmony. He is deeply interested in the on-going dialogue between science and religion, and teaches the popular IAC 2002, "Science, Engineering and Religion: an Interfaith Dialogue," each spring, open to all GT students. Cressler was awarded the 2010 Class of 1940 W. Howard Ector Outstanding Teacher Award (Georgia Tech’s top teaching award), and the 2013 Class of 1934 Distinguished Professor Award (the highest honor Georgia Tech bestows on its faculty). Visit him at: http://users.ece.gatech.edu/~cressler (research) and http://johndcressler.com (books).
INTA 3242 HP: Soccer and Global Politics

Dr. Kirk Bowman

3 credit hours
15 HP seats

Soccer is the undisputed global game and is an excellent lens to understand and explain our world. Soccer is also a powerful actor in forging identity, influencing norms, shaping migration, challenging colonization, contributing to economies, and much more. The beautiful game is a powerful tool to transform youth and marginalized communities including refugees, immigrants, the homeless, amputees, and others. This course examines the relationship between soccer and global politics around the world, with some emphasis on Latin America. Students will have the opportunity to interface with scholars from around the world at the Atlanta Conference on Soccer & Innovation in late March. Motivated students may also present research panel in the conference.

Dr. Kirk Bowman is Professor and Regents’ Entrepreneur in the Sam Nunn School of International Affairs. He is the author of four books, most recently Reimagining Global Philanthropy (Columbia University Press, 2021). His current research examines the intersection of global soccer and society. He directs a Vertically Integrated Project (VIP) on Soccer, Community, Innovation & Politics (SCIP) that will host and direct the inaugural edition of Soccer Con with the Atlanta Conference on Soccer & Innovation in March 2023. He is co-founder and director of the international NGO Rise Up & Care.

| Lecture | W/F 3:30 PM
| MRDC 3403 |
| CRN | 33634 |
LMC 3506 HP: Enlightenment, Literature, and Culture

Dr. Aaron Santesso

3 credit hours
15 HP seats

This literature-centered course looks at the transformation of various physical modes of cultural communication during the Enlightenment period (from the late seventeenth century to the late eighteenth century), focusing on five different material technologies: paper, coins/medals, wooden signs, puppets, and needlework. It serves as an introduction to eighteenth-century British and American literature, art, and culture; it also introduces students to the “material turn” in media studies and to “think theory” in literary studies. Finally, it reinforces the School of Literature, Media, and Communication's focus on combining reading, thinking, and “making.” The course culminates with students presenting their own, self-made example of one of the communicative objects we have studied.

Dr. Aaron Santesso is Professor of Literature in the School of Literature, Media, and Communication at Georgia Tech. He is the author of numerous articles and essays on topics ranging from eighteenth-century literature to science fiction; his work has appeared in leading academic journals as well as general-interest publications (including Slate and The Chronicle of Higher Education). He has authored or edited five books, including, with David Rosen of Trinity College, The Watchman in Pieces: Surveillance, Literature, and Liberal Personhood (Yale University Press), which was awarded the James Russell Lowell Prize by the Modern Language Association. His present research revolves around the connections between literature and liberalism.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W 11:00 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Skiles 169</td>
</tr>
</tbody>
</table>

| CRN | 33416 |
MATH 1553 HP: Introduction to Linear Algebra

Dr. Christopher Jankowski

Prerequisites: SAT Math score of 600 or ACT Math score of 26 or MATH 1113 or MATH 1551

2 credit hours 19 HP seats

Linear Algebra is very conceptual compared to most mathematics courses that students have previously taken. By the end of this course, it is expected that students will be able to do the following.

A) Solve systems of linear questions.
B) Solve eigenvalue problems.
C) Analyze mathematical statements and expressions (for example, to assess whether a particular statement is accurate, or to describe solutions of systems in terms of existence and uniqueness).
D) Write logical progressions of precise mathematical statements to justify and communicate your reasoning.
E) Apply linear algebra concepts to model, solve, and analyze real-world situations.

Dr. Christopher Jankowski is a Senior Academic Professional in the School of Mathematics, where he serves as the Director of Graduate Advising and Assessment (DGAA) and Director of Postdoctoral Teaching Effectiveness. He earned his Ph.D. in Mathematics from the University of Pennsylvania. His main research interest lies in constructing and classifying E_0-semigroups (up to cocycle conjugacy) using the theory of CP-flows and boundary weight maps.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W 8:25 AM (D.M. Smith 105) W 6:30 PM (Clough 144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio</td>
<td>F 8:25 AM</td>
</tr>
<tr>
<td></td>
<td>Skiles 255</td>
</tr>
<tr>
<td>CRN (lecture- HP)</td>
<td>33954</td>
</tr>
<tr>
<td>CRN (studio- HP1)</td>
<td>33955</td>
</tr>
</tbody>
</table>
MATH 2551 HP: Multivariable Calculus

Dr. Doron Lubinsky
Prerequisites: MATH 1552 and MATH 1553, 1554, or 1564
4 credit hours
19 HP seats

Multivariable calculus is a comprehensive introduction to all aspects of calculus in two and three variables. Students will learn how to differentiate and integrate such functions, how to find their maxima and minima, and how to use Lagrange multipliers when there is a constraint. All the classical theorems are covered - Fubini’s theorem on integration in several variables, Green's Theorem, Stokes’ Theorem and Gauss' Divergence Theorem. The geometry of surfaces in space is discussed, as are physical applications such as centers of mass, circulation, flow, and flux.

Dr. Doron Lubinsky has been at Georgia Tech for 21 years. His research areas include orthogonal polynomials, approximation theory, and random matrices.

<table>
<thead>
<tr>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>T/TH</td>
</tr>
<tr>
<td>9:30 AM</td>
</tr>
<tr>
<td>D.M Smith 105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studio</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/W</td>
</tr>
<tr>
<td>9:30 AM</td>
</tr>
<tr>
<td>Skiles 168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRN (lecture- HP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33957</td>
</tr>
<tr>
<td>CRN (studio- HP1)</td>
</tr>
<tr>
<td>33965</td>
</tr>
</tbody>
</table>
MGT 4194 HP: Social Entrepreneurship

Dr. Robert Thomas

Please note: counts toward Award of HP Distinction in Service Pathway. This course is taught in Tech Square. Restricted: sophomores, juniors, seniors only.

A team-based, student-driven class to learn the process of Social Entrepreneurship, a concept that has gained momentum in recent years. The process applies innovative solutions to the world’s most pressing social problems, and has become an attractive alternative for students who wish to utilize their leadership and managerial skills to address the challenges of the world. The class will feature high-profile guest speakers to illustrate the process in action. Social entrepreneurs: develop a mission to create and sustain social value; design processes to pursue opportunities that support the mission; attract the resources necessary to achieve the mission and sustain the organization; leverage those resources to expand the scope of their services; and maintain a clear focus on the needs of those being served.

Dr. Robert Thomas is Professor of the Practice in the Scheller College of Business. He joined Georgia Tech in January 2006 to develop curriculum and create programming for the Institute for Leadership and Entrepreneurship, an interdisciplinary unit that enhances leadership and entrepreneurship for socially responsible and sustainable value creation. He teaches courses in servant leadership, social entrepreneurship and entrepreneurial finance. Prior to joining Georgia Tech, he served in senior leadership positions in industry, investment banking, financial services and academia. He has extensive experiences working with universities, foundations and non-governmental organizations in Central and Eastern Europe and has served as a member of the board of directors of numerous nonprofits and as Chair of the Board of the Greenleaf Center for Servant Leadership.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>T/TH 2:00 PM Scheller College of Business 201</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRN</td>
<td>33334</td>
</tr>
</tbody>
</table>
Music Ensembles (1 credit hour)

MUSI 3121, 3131, 3231, 3241, 3251, 3261, 3311, 3321, 3511, 3531, 3551, 3611

The HP is expanding its partnership with the School of Music and will now grant up to 3 HP credits for ensemble classes.

Why take an ensemble class for HP credit?

- Music ensembles are active-learning classes—“hands-on” and “voice-on”—a great fit for our curious, creative, and highly motivated HP students.
- Making music is a universal and uplifting human experience—a great fit for our times and all times.
- Non-music majors/minors earn humanities credits for ensemble classes, and each class may be repeated for humanities credit. Here is additional information.
PHIL 3050 HP: Political Philosophy

Dr. Michael Hoffman 3 credit hours
5 HP seats

Given the threats posed by increasing polarization, gridlock in decision making, and the growth of autocratic tendencies in the United States, this class focuses on the question of how democracy can be improved by revisiting contributions to the philosophy of democracy. Based on a reading for each class meeting, we will discuss various theories of democracies, including deliberative and more radical approaches; their challenges; and principles on which democratic decision making should be based.

Dr. Michael Hoffman is a Professor for Philosophy in the School of Public Policy at Georgia Tech. He is the Director of the Reflect! Lab and Co-Director of ETHICx, the Ethics, Technology, and Human Interaction Center. His current research focuses on the development of the Reflect! platform. Until recently, Hoffmann was the PI on the NSF project "Fostering self-correcting reasoning with reflection systems." This project is motivated by research that indicates that students hardly ever substantially revise the products of their reasoning, even if they are explicitly instructed to do so. The Reflect! platform will "orchestrate" collaboration within small teams of students, between teams and an instructor, and within a class. Working on a "wicked problem" such as the ethical challenges of facial recognition technologies, students are time and again confronted with new points of view so that they experience the limitations of their own perspective and the need for self-correction.

Dr. Hoffmann directs the VIP Digital Deliberation and the project Digital Deliberation and Social Justice in the Digital Age. Both are supported by a grant from the Digital Integrative Liberal Arts Center (DILAC). In a previous project, Hoffmann developed the interactive and web-based argument visualization tool "AGORA" (see http://agora.gatech.edu). This project was supported by a grant from the U.S. Department of Education.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W 3:30 PM Skiles 169</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRN</td>
<td>33510</td>
</tr>
</tbody>
</table>
PHYS 2211 HP: Introduction to Physics I

Dr. Ed Greco
Prerequisites: MATH 1552

4 credit hours
30 HP seats

The M&I version of PHYS 2211 emphasizes the atomic nature of matter and integrates traditional mechanics with thermal physics. There is a strong emphasis on the Momentum Principle, the Energy Principle (the first law of thermodynamics), and the Angular Momentum Principle. The main goal of this course is to have students engage in a process central to science: the attempt to model a broad range of physical phenomena using a small set of powerful fundamental principles.

To aid in this goal students will develop computational models that predict the motion of interacting objects. These models will be made using the Visual Python programming language. The course also emphasizes the atomic structure of matter, especially the ball and spring model of solids, and photon emission and absorption in quantized systems.

Topics include:
- The different types of matter and interactions found in nature
- Using the momentum principle to predict future motion
- An atomic model of solids
- The momentum principle in moving reference frames
- Energy conservation including relativistic energy
- Energy in macroscopic systems including thermal energy
- Multi-particle systems and the center of mass
- Collisions including relativistic particle collisions
- Angular momentum and quantized angular momentum
- Energy quantization and photon emission and absorption

Dr. Ed Greco is a native Floridian who moved to Atlanta in 2000 with his high school sweetheart and earned his Ph.D. in physics from Georgia Tech on low Reynolds number flow in 2008. Since joining the faculty at Tech, Ed has been active in the development of new curriculum for undergraduate students. When not in the classroom, he coordinates the outreach activities for the school of physics and serves as radio show co-host “Fat Daddy Sorghum” on WREK's Inside the Black Box where he enjoys sharing his passion for science with the Atlanta community. Photography, Chess, Conchology, foraging for wild edibles, winemaking, and exploring Appalachia on a motorcycle are just a few of his varied pastimes. Mostly, however, he enjoys spending quality times with his loving family.

<table>
<thead>
<tr>
<th>Lecture</th>
<th>M/W/F 12:30 PM (Howey Physics L1)</th>
<th>M 6:30 PM (Clough 152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab</td>
<td>M</td>
<td>3:30 PM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clough 362</td>
</tr>
</tbody>
</table>

CRN (lecture- HP) CRN (lab- HPL)

| 33803 | 33807 |

33
PUBP 3350 HP: Energy Policy

Dr. Daniel Matisoff

Why do oil prices rise and fall? Will we ever "run out" of oil? Can we solve climate change without hurting American industry? What are the promises and pitfalls of renewable energy? Under what economic and policy conditions can renewable energy be competitive? Can America achieve energy independence? What does energy independence mean? How will carbon regulation impact American energy production? Why should we incentivize renewable energy production and how can we best design those incentives and regulations?

This course cuts through myths that are pervasive in the media, public opinion, and in statements by politicians. It will give you a theoretical basis from which to assess energy policy options, and an understanding of how global energy markets work, as well as an overview of domestic and international energy policy. The course seeks to build group project skills and students will produce a policy analysis of policy options related to an energy policy problem.

Through this course you will gain the tools to assess and analyze the market characteristics, policies, and regulations that impact the supply, demand, and impacts of energy consumption in the U.S. and abroad. This course will provide an overview of applied energy economics, energy regulation, basics of U.S. and global energy production / consumption, and policy options for promoting a sustainable energy future.

Dr. Daniel Matisoff teaches and conducts research in the areas of public policy, energy policy, and corporate sustainability. His research focuses on the effectiveness and efficiency of comparative approaches to addressing environmental problems and the adoption and diffusion of energy technologies and policies. He currently is a fellow with the Brook Byers Institute for Sustainability, and is affiliated with the Strategic Energy Institute and Center for Urban Innovation. He has participated in over $4 million of sponsored research through the National Science Foundation, the European Union Center for Excellence, the German Academic Exchange Service, the Georgia Department of Transportation, and the National Electric Energy Testing Research and Applications Center. His recent research has resulted in publications in the Review of Environmental Economics and Policy, Environmental and Resource Economics, Energy Economics, Environmental Science and Technology, Energy Policy, and Business Strategy and the Environment, among other outlets. His current research interests include: evaluating the effectiveness of voluntary eco-labeling programs; the effectiveness of incentives for solar electricity; the adoption of smart grid technologies and policies; and the impact of large scale solar adoption on consumer rates and bills.

Lecture: T/TH 9:30 AM
Clough 127

CRN: 33982
SPAN 4454 HP: Latin America through Film

Dr. Osvaldo Cleger
3 credit hours

Prerequisites: SPAN 2002 or AP/IB equivalent
10 HP seats

Please note: Course is taught in Spanish. Counts toward Award of HP Distinction in Global Engagement Pathway.

In Spanish 4454, students will develop their skills for the discussion of topics of sociocultural and historical relevance in the context of Latin American societies. In addition, students will hone on their skills for literary and film analysis and academic writing. The components of this course are: a general introduction to different historical and cultural processes that have taken place in the Latin American region, the acquisition of technical vocabulary for the analysis of texts and film, and the critical reading of different artistic manifestations remediated and recycled by the film industry, including poetry, narrative, cinema, graphic arts and music. During the semester we will touch on only the most critical grammatical aspects of the Spanish language, since this course is not focused on grammar. Each student is expected to have at least the equivalent of 6 semesters of Spanish and a minimum proficiency of intermediate low (following ACTFL standards) in the language at the beginning of the course.

Dr. Osvaldo Cleger is a new media theorist specializing in digital culture, e-literature, media and emerging technologies in the Hispanic world, with a primary focus on countries such as Spain, Argentina, Colombia, Mexico, Ecuador and Cuba. He earned his MA from NMSU and his Ph.D. in Hispanic Literature and Cultural Studies from University of Arizona. His research interests include visual culture, film, photography, hypertext theory and fiction, blogging, digital poetry, procedural rhetoric, simulation theory and video games.

| Lecture: | M/W 11:00 AM
| | Swann 115
| CRN: | 33374 |
Award of HP Distinction in a Pathway

HP Pathways
HP students may choose to concentrate their HP studies in one or more of three HP Pathways: Research, Service, or Global Engagement. These three Pathways:

1. Transcend traditional disciplinary boundaries,
2. Cannot be pursued in an existing major, minor, or certificate program,
3. Capture fields of passionate interest by many HP students, and
4. Advance the Georgia Tech motto, “Progress and Service,” and the Goals and Objectives of Georgia Tech’s Strategic Plan.

Award of HP Distinction in a Pathway
HP students who complete the Requirements for Award of HP Distinction in a Pathway will receive recognition of the award at graduation, on their HP Certificate and on their HP Stole, and may note this recognition on their resumé as follows:

1. Honors Program Award of Distinction in Research
2. Honors Program Award of Distinction in Service
3. Honors Program Award of Distinction in Global Engagement

For complete information on the HP Distinction in a Pathway options, visit hp.gatech.edu/honors-program-pathways.

List of approved classes for HP Pathways (2014 – 2022)

Honors Program authorization form- independent research
Contact Information

Dr. Roberta Berry, HP Executive Director
robertaberry@gatech.edu
404.385.7535
Eighth Street Apartments 012

- Questions or concerns about the Honors Program that you would like to bring to the attention of the Executive Director

Dr. Amy D’Unger, HP Associate Director
amy.dunger@gatech.edu
404.385.7533
Eighth Street Apartments 007

- Curriculum
- Research or study abroad approval
- Academic advising
- Questions or concerns about the Honors Program that you would like to bring to the attention of the Associate Director

Ms. Lauren Evans, HP Program & Operations Manager
lauren.evans@gatech.edu
404.894.4946
Eighth Street Apartments 008

- HP events and activities
- HP equipment, furniture, and supplies
- Honors Leadership Council (HLC)
- HP Student Assistants